skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Georgiev, Ilyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Conventional rendering techniques are primarily designed and optimized for single-frame rendering. In practical applications, such as scene editing and animation rendering, users frequently encounter scenes where only a small portion is modified between consecutive frames. In this paper, we develop a novel approach to incremental re-rendering of scenes with dynamic objects, where only a small part of a scene moves from one frame to the next. We formulate the difference (or residual) in the image between two frames as a (correlated) light-transport integral which we call the residual path integral. Efficient numerical solution of this integral then involves (1) devising importance sampling strategies to focus on paths with non-zero residual-transport contributions and (2) choosing appropriate mappings between the native path spaces of the two frames. We introduce a set of path importance sampling strategies that trace from the moving object(s) which are the sources of residual energy. We explore path mapping strategies that generalize those from gradient-domain path tracing to our importance sampling techniques specially for dynamic scenes. Additionally, our formulation can be applied to material editing as a simpler special case. We demonstrate speed-ups over previous correlated sampling of path differences and over rendering the new frame independently. Our formulation brings new insights into the re-rendering problem and paves the way for devising new types of sampling techniques and path mappings with different trade-offs. 
    more » « less